

Applied Biomedical System Design

Module designation	Provides understanding and explanation regarding the design of a system or medical device in the biomedical field as well as advanced knowledge about system concepts, system thinking and system analysis.
Module level, if applicable	Master
Code	SPSTB212104
Subtitles, if applicable	-
Courses, if applicable	-
Semester(s) in which the module is taught	Odd semester
Person responsible for the module	Ir. Rini Dharmastiti, M.Sc., Ph.D., IPM, ASEAN Eng.
Lecturers	Ir. Rini Dharmastiti, M.Sc., Ph.D., IPM, ASEAN Eng. Dr. Urip Agus Salim, S.T., M.Eng.Sc. Ir. I Gusti Bagus Budi Dharma, S.T., M.Eng., Ph.D., IPM., ASEAN. Eng. Ir. Dawi Karomati Baroroh, S.T., M.Sc., Ph.D.
Language	Indonesian & English
Relation to curriculum	Compulsory course
Type of teaching, contact hours	This course is planned to have 14 teaching weeks and 2 weeks of examination. several types of teaching conducted: <ul style="list-style-type: none"> - Classic tutorial, - Case-study learning, - Discussion - Practical Activities → Fusion software, HoQ method

Workload	<p>This course is planned to have 13 teaching weeks, 1 week lab visit, and 2 weeks of examination.</p> <p>Lectures = 3 SKS x 50 minutes x 15 meetings = 2250 minutes = 37.5 hours = 37.5 hours/25 hours =1.5 ECTS</p> <p>Experiment/Practical activities = 3 SKS x 60 minutes x 1 meeting = 180 minutes = 3 hours = 3/25 hours = 0.12 ECTS</p> <p>Assignment = 3 SKS x 60 minutes x 16 meetings = 2880 minutes = 48 hours = 48 hours/ 25 hours =1.92 ECTS</p> <p>Self Study = 3 SKS x 60 minutes x 16 meetings = 2880 minutes = 48 hours = 48 hours/ 25 hours =1.92 ECTS</p> <p>Total workload = 5.46 ECTS</p>
Credit points	3 SKS (5.46 ECTS)
Requirements according to the examination regulations	-
Recommended prerequisites	-
Module objectives/intended learning outcomes	<p>PLO 1: Able to use knowledge in the fields of engineering, health, and biology to analyze problems in the field of biomedical engineering globally that are relevant to public needs.</p> <p>PLO 2: Able to design research related to artificial organs and medical instrumentation.</p> <p>PLO 3: Able to test and analyze relevant design results in biomedical engineering field.</p>

Content	<ol style="list-style-type: none"> 1. Introduction to biomedical system design 2. Differences between engineering and physiological control system 3. System design analysis: fundamental concepts 4. Basic problem in biomedical system design 5. Basic modelling concept 6. System Characterization 7. Mathematical modeling 8. Generalized system properties 9. Medical instruments and devices 10. Modelling applications (360Fusion) 11. Practical Activities: 3D design using Fusion
Study and examination requirements and forms of examination	Classes are conducted with 80% classic tutorial and 20% case study/project based presentation per meeting. Exams are done by written exam and/or task-based exam.
Media employed	PowerPoint, LMS (eLok, Google Classroom, etc.), and online meeting platform (Zoom, Gmeet, etc.)
Reading list	<p>King, P. H., Fries, R. C., Johnson, A. T., 2015, Design of Biomedical Devices and Systems 3rd Edition, Taylor & Francis, FL</p> <p>Ulrich, K.T. and Eppinger, S.D., 2012, Product Design and Development, 6th Ed, McGraw-Hill, Inc.</p> <p>Ashby, M., Shercliff, H. and Cebon, D., 2007 Material Engineering, Science, Processing and Design, Elsevier</p> <p>Weinger, M.B., Wiklund, M.E., Gardner-Bonneau, D.J, 2011, Handbook of Human Factors in Medical Device Design, CRC Press, Taylor & Francis Group</p> <p>Produk Inovatif Desain Konsep, Prototype dan HKI (Desain Industri-Paten), Prof. Ir. Alva Edy Tontowi, M.Sc., Ph.D, Mei 2013</p>
Last Modified	November 2025.