

## Artificial Intelligence in Biomedical Engineering

|                                           |                                                                                                                                                                                                                                           |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module designation                        | This course aims to provide students with expertise in artificial intelligence theory applied to provide solutions to complex biomedical problems.                                                                                        |
| Module level, if applicable               | Master                                                                                                                                                                                                                                    |
| Code                                      | SPSTB212227                                                                                                                                                                                                                               |
| Subtitles, if applicable                  | -                                                                                                                                                                                                                                         |
| Courses, if applicable                    | -                                                                                                                                                                                                                                         |
| Semester(s) in which the module is taught | Odd semester                                                                                                                                                                                                                              |
| Person responsible for the module         | Dr. Eng. Igi Ardiyanto, S.T., M.Eng.                                                                                                                                                                                                      |
| Lecturers                                 | Dr. Eng. Igi Ardiyanto, S.T., M.Eng.<br>Dr. Eng. Ir. Sunu Wibirama, S.T., M.Eng., IPM                                                                                                                                                     |
| Language                                  | Indonesian & English                                                                                                                                                                                                                      |
| Relation to curriculum                    | Elective course                                                                                                                                                                                                                           |
| Type of teaching, contact hours           | This course is planned to have 14 teaching weeks and 2 weeks of examination. Several types of teaching conducted: <ul style="list-style-type: none"><li>- Classic tutorial,</li><li>- Case-study learning,</li><li>- Discussion</li></ul> |

|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Workload                                              | <p>This course is planned to have 13 teaching weeks, 1 week lab visit, and 2 weeks of examination.</p> <p>Lectures = 3 SKS x 50 minutes x 15 meetings<br/> = 2250 minutes<br/> = 37.5 hours<br/> = 37.5 hours/25 hours<br/> = 1.5 ECTS</p> <p>Experiment = 3 SKS x 60 minutes x 1 meeting<br/> = 180 minutes<br/> = 3 hours<br/> = 3/25 hours<br/> = 0.12 ECTS</p> <p>Assignment = 3 SKS x 60 minutes x 16 meetings<br/> = 2880 minutes<br/> = 48 hours<br/> = 48 hours/ 25 hours<br/> = 1.92 ECTS</p> <p>Self Study = 3 SKS x 60 minutes x 16 meetings<br/> = 2880 minutes<br/> = 48 hours<br/> = 48 hours/ 25 hours<br/> = 1.92 ECTS</p> <p>Total workload = 5.46 ECTS</p> |
| Credit points                                         | 3 SKS (5.46 ECTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Requirements according to the examination regulations | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Recommended prerequisites                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Module objectives/intended learning outcomes          | <p>PLO 2: Able to design research related to artificial organs and medical instrumentation.</p> <p>PLO 3: Able to test and analyze relevant design results in biomedical engineering field.</p> <p>PLO 4: Able to communicate and work effectively in a multi-disciplinary team.</p>                                                                                                                                                                                                                                                                                                                                                                                         |

|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Content                                                     | <ol style="list-style-type: none"> <li>1. Introduction to Applications of Artificial Intelligence in Biomedicine</li> <li>2. Overview of Artificial Intelligence</li> <li>3. Artificial Intelligence and Machine Learning</li> <li>4. Regression</li> <li>5. Naive Bayes Classification</li> <li>6. Instance Based Learning</li> <li>7. k-Means Clustering</li> <li>8. Principal Component Analysis</li> <li>9. Decision Tree Decision Rule Decision Table Random Forest</li> <li>10. Support Vector Machine</li> <li>11. Artificial Neural Networks</li> <li>12. Clustering</li> <li>13. Ensemble Learning</li> <li>14. Fuzzy Logic and Genetic Algorithms</li> <li>15. Deep Learning</li> <li>16. Artificial Intelligence System Design for Biomedical Applications</li> <li>17. A System for Melanoma Diagnosis Based on Data Mining</li> <li>18. Fuzzy Naïve Bayesian Approach for Medical Decision Support</li> </ol> |
| Study and examination requirements and forms of examination | <p>Classes are conducted with 80% classic tutorial and 20% case study/project based presentation.</p> <p>Exams are done by written exam and/or task-based exam.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Media employed                                              | PowerPoint, LMS (eLok, Google Classroom, etc.), and online meeting platform (Zoom, Gmeet, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Reading list                                                | <ol style="list-style-type: none"> <li>1. Agah, A. (2014). Medical applications of artificial intelligence. Boca Raton, Taylor &amp; Francis.</li> <li>2. Lisboa, P. J. G. (2000). Artificial neural networks in biomedicine. London, Springer.</li> <li>3. Smolinski, T. G., Milanova, M. G., &amp; Hassanien, A. E. (2010). Computational intelligence in biomedicine and bioinformatics: current trends and applications. Berlin, Springer.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Last modified                                               | November 2025.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |